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.u.lnd-To pin insiabt into the transmission of impact load disturbances into elastic solids aIoqlllrlOW
slits, the pJaae.straia problem of concentrated normal and shear forces applied suddenly to ORe face of a
semi-infinde mathematicll crack is treated. Exact solutions are obtained and the dynamic stress inteRsicy
facton and strain eneraY deuity intensity are studied. It is found that the domiDaat stress mode (I or m
near the crick edae chanIes rapidly with the arrival of the various waves from the concentrated forces. In
particular, upon the Rayleiah wave arrival, the normal and shear forces cause, respectively, Strolll mode II
and mode I behavior.

INTRODUCTION

The role of narrow cuts or slits as stress concentrators in elastic solids is well-known(l]. When
the undeformed slit gap is vanishingly small (the slit is a mathematical crack) the stresses
generated near the slit edge by the diffraction of incident waves may temporarily exceed 'the
stresses for a corresponding quasi-static disturbance[2-S]. H the incident waves pass over the
slit edge and then engulf the surfaces, the wave diffraction pattern in the crack limit arises, in
elect, to remove the incideat wave stresses which would occur on the slit surface region if no
slit were present. However, the incident waves may reach the slit surface before arriving at the
slit edge. In the crack limit the diffraction pattern now arises, in effect, to remove the
displacement discontinuities which the incident waves would generate ahead of the slit region if
the material were not joined there.

Such situations can arise when the disturbance generating the incident waves is on the slit
surface itself; for iastaace, the sUt may intersect an elastic solid surface subjeoted to impact
loadiDp. With a view toward studyinc these situations, the present article considers the plane
strain """m of cca:eDtlated normal and shear forces applied suddenly to one face of an
initially undisturbed semHnfiDite crack. The analysis is suided by [6], which coasidered the
symmeb'ic case of equal aad opposite normal forces on either face. As in [6], particular
attention focuses on the stress field near the crack ed,e.

As Lamb's problem analyses sbow[S, 7], even compressive loadings may produce temporary
outward buJaes on the surface to which they are applied. Since the undisturbed mathematical
crack has, DO lIP, this ..... implies material interpenetration. This difliculty can hypothetic
ally be llliaintized or eliminated ,by superposing initial tensile stress fields which provide
sulicietftly Iaqe gaps. It can also be araued here that the crack is only a mathematical model of
an adUaI slit with a small but fiaite .... Moreover, while the loadiDas here are applied suddenly
with arbitrary IIUlIIIitUdes, ODe lOal of this work is to provide results which. by superposition,
can be used for aetualimPKl loadings. For these loadiaas, the buJaing mapitudes are smaller
than the finite gaps considered.

As seen in Fig. la, the crack is defined in terms of the Cartesian coordinates (x, y) by y =0,
x < O. For s =clx(time) < 0 the elastic solid is at rest, where (Cit cll are the dilatational and
rotational wave speeds. For s > 0 concentrated normal and shear forces N and 5, i.e. line loads
in the out-of-p1ane direction, are applied to the crack surface y =0- at x =-h. Thus, along
y=Owe have

x < 0: (0';,0';,) =0, (0';,0';,) =-(N, S)8(-x - h)H(s)

x>O: (u- - u\ v- - v+)=O
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Fig. \. (a) Loading and geometry, (b) Wave pattern for 0< s< h, (c) Wave pattern for s> mho

where (u, v) are the displacements in the (x, y)-directions, aand H are the Dirac and Heaviside
functions and the superscripts· denote field variables in the half-planes ±y >O. The.governing
equations in both half-planes are

1 2 (22 1 2 (2 1-0'" =m V,y + m - )u,,,, -O'y =m u,,, + m - 2)v", -0'", =u,y + fl,,,
~ ~ ~

s ~o: (u, v).O

(3)

(4)

(5)

where IJ. is the shear modulus, ( )'G" a( )/a« andV2 is the Laplacian operator.
When (N, S) are applied, a pattem.of wavefront$raditios from the point y =0-, x =- hinta

the half-plane y <0. As seen in Fis. 1(b), this pattern defines the wave motion io the solid for
s < h. For s > h these waves reach the crack odge (x, y) =0 and are .meted. Fipre l(c)
shows the wave pattemafter the rotational Wave has reached the edge(s > mh).

Due to the characteristic lensthh.applicationof integral transfornu_ectly te(H-(5)leads
to sectionally analytic functions in the transform space which are notre1ated in a standard
Wiener-Hopfmanner(8]. This dilicutty can be avoided by recogniziaathat if (2) is relaxed, the
problem reduces to Lamb's problems{7] for two adjacenthalf-planes; wtteretheloading 00 one
half-plane vanishes. In view of the aforemea.ec.t property of the difraction pattern, there
fore, the original problem is essentially a superposition of the two Lamb's ptoblems with the
problem of displacelfteotdiscontinuities preseribled across the plane .ahoad.of an unloaded
crack. In view of (2), thesediSCOlltiiluities are the ....tives of therelativedisplaeemeiltsofthe
two half-plane surfaces arising for x >Oin tbe Lamb's problems. AsinJ6.],theUft1oaed crack
problem is itself construettdbya superposition of tbebasic solution treated in the next two
sections.

BASIC SOLUTION

Consider tbe same crack with both surfaces now stress-free. At some insu,mt t= oclimb and
glide dislocations of strength Al and A2 appear at the crack edge and move in tbe.positive
x-direction with a consu,mt speed CCI' Equations (3)-(5) once again hold, with t replacing s, but
(1) and (2) are replaced by

(6)
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The Laplace transform over I and bilateral Laplace transform over x and its inverse are defined
as[9J

!L = roo f(l) e-pI dl; fs =foo f(x) e -pqx dx, f(x) =2P .l fs epqx dq (7a-c)
k - m r

respectively, where p is real, positive and large enoush to insure conversence of (7a), q is, in
general, complex and r is the standard inversion path of intesration. Application of (7a, b) in
view of (5) and appropriate radiation conditions modify (3) and (4) merolY by appendinsthe
superscripts ( )*=( )LB and replacins the operators ( lox and ( ),s with pq and p, respectively.
Solutions to these transformed equations which are bounded for± y > 0 are

(8)

(9)

where (A±, B±) are arbitrary functions of (P, q) and (o±, b±) are defined in the q-plane cut alons
Im(q) =0, ±Re(q) > (-I, -m) so that Re(a±, a), Re(b±, b) 2: O. Application of (7a, b) to (6) sives

(17; - 17;, 17;, - 17;,)* =0, (u- - u+, v- - v+)* =(&U, &V)*, (17;,17;,)* =(17,7')*
(IOa-c)

(II)

alons Y=0, where k = lie and the &rterms exist as transforms for Re(q) > -Ie. Here (17,"') and
(u, V) are, respectively, the unknown stresses ahead of the crack edge and the unknown crack
surface relative displacements. Thus, they vanish for ± x < 0, respectively. Substitution of (8)
into (lOa, b) yields (A±, Bj in terms of (&U, &V)*, whereupon (tOe) reduces to

(l2a-c)

Here R is the Rayleish function which exhibits simple zeros at q =±n, n =C.fCR > m and CR

is the byleish wave speed.
The quantities (17, 7') and (u, V) radiate along y =0 from the crack edge in, respectively, the

positive and negative x-directions behind wavefronts defined by I> fx and I> lxI, where
f = min(k, I). From (7a, b), then, the Laplace transforms of (17,7') and (U, V) behave as e-pb

and e-p1xl, so that (17,7')* and (U, V)* exist in the overlapping half-planes Re(q) > -f and
Re(q) < I, respectively. Thus, the form of (t2a) shows that, unlike.the oriainal problem, the
basic problem reduces to two relations of the standard Wiener-Hopf type [S}. Because they are
uncoupled, their solution is mathematically straishtforward. Moreover, the uncoupling shows
that the normal crack plane stress and relative displacement depend on the climb dislocation
strensth &.. while the shear stress and tansential relative displacement on the crack plane
depend on the glide dislocation strength &2'

Study of (l2b) shows that the function

(13)

is analytic in the strip IRe(q)1 < I, has no zeros at q=±n and approaches unity as /qf -+CIl. From
analytic function theory[8J, therefore, G can be written as the product of functions G+ and 0-,
where

InG.(q)=-! (m_l_tan-,(4w2~lal)dW
- 'IT), w±q T (14)
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which are analytic in the overlapping regions ± Re(q) > -1. Therefore, in view of (II) and the
observations on (u, V)*, the first relation in (l2a) can be rewritten as

(15)

where the first term on the I.h.s. is analytic for Re(q) < 1 while the r.h.s. is analytic for
Re(q) > -k. The remaining term has a branch cut for Im(q) = 0, Re(q) > 1, a pole at q =: - k and
behaves as 0(11\/q) when Iql ..... 00. Therefore, from analytic function theory [81, it can be written
as the sum of parts which are analytic, respectively, in the overlapping regions Re(q) < 1 and
Re(q) > -k. The splitting can be performed by inspection and (15) becomes

(16)

(17)

The r.h.s. and l.h.s. of (16) are clearly analytic in, respectively, the overlapping half-planes
Re(q) > - f and Re(q) < 1. By analytic continuation, therefore, both sides represent the same
entire function, say Z. Equations (6), (7a, b) and the fact that V == 0 for x> 0 lead to the Abelian
statement

(18)

where, in view of v's continuity at (x, y) = 0, the I.h.s. is tit/p. Therefore, v* mustbehave as
O(l/q), \ql ..... oo. Study of the l.h.s. of (16) then shows that we must have Z ..... O,\qr..... oo

whereupon Liouville's theorem for bounded entire functions allows the· conclusion· Z == o.
Equation (16) can now be solved for (u, V)*. A similar procedure is valid for the second
relation in (12a). The expressions for A"', B± now become

and the basic problem is essentially solved. The transform inversion for the stresses and their
behavior near the crack edge is illustrated in the next section, since this is required later.

STRESS BEHAVIOUR NEAR THE CRACK EDGE

As an example, we consider Uyo For y > 0 eqns (5), (7), (8) and (19) give

(20)

Substitution of the second k2-term in (7c) yields

(21)

where :r can be taken as the Im(q)-axis. Following the scheme of [101, the Cauchy theorem is
used to change this path to a Cagniard contour along which qx - by =: -z, where z is apositive,
real parameter. Such a contour is readily found by solving this equation for q, so that (21)
becomes

(22a, b)
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where r =V(r+,2), tan fJ ="x are the polar coordinates seen in Fig. 1. Equation (22b) defines
one branch of a hyperbola with intercept q = -m cos 8. Appropriately, the hyperbola lies in the
half of the q-plane wlterethe exponential in (21) decays as Iql-.oo. The Laplace transform of
8(t - z) is e-P', so clearly the inverse of (22a) is

(23)

where t replaces z in (22b). For x <0, mlcos fJl> 1 the hyperbola intersects, and therefore must
be deformed around, the branch cut Im(q) =0, Re(q) > I of b_IG_. The integration along the
additional contour gives, upon inversion, the extra contnbution

-4M~~H(m'-t)H[t-rf(')]
m'ff~

(24)

where, since G+ is analytic for Re(q) > -1, (13) has been employed and

rq == -tcos '-sin fJV(m 2r- t2
), f(')=:: lcos 81 +sin tN(m2 -l). (25)

If Ie < m it is possible that mIcas 'I> Ie, when for x> 0 the hyperbola crosses the simple pole at
q =-k. The Cauchy residue theorem then gives yet another contribution which, upon inversion,
becomes

e:!fT(Ie)H[t -' 1a - b(k),].m

Substitution of the first krterm in (20) into (7c) yields, similarlY,

u.k.b... Re ( Tqb_a ] H(t - r) fJ '1' 81- I( 2 .2)7ftt:: (q-n)(q+k)G_ Y(t2-?)' rq=-tcos +lSm v t -,.-.

(26)

(27a,b)

In this case, the hyperbolic Cagniard contour, of which (27b) defines one branch, does not
intersect the branch cut of the intesrand. Thus, no contribution analogous to (24) appears. If
Ie < 1, however, it is possible that lcos 'I> Ie, when for x> 0 the simple pole at q == -Ie is
crossed, resulting in an additional contribution

_P~2 T(k)H[t -la - a(k),].
m

(28)

From a wave propagation viewpoint, (23) and (27a) define cylindrical rotational and dilatational
waves which radiate from (x,,) =:: 0 while (24) describes head waves geaerated by coupIiDg
alooa the crack surface. The contributions (26) and (28) are the waves generated when the aIide
dislocation exceeds, respectively, the shear and dilatational wave speeds in the elastic solid.

To obtain the behavior of the k2-contribution to 0', near the crack edge for y > 0, we study
(23)-(28) as r-.O. For t > 0 (24), (26) and (28) give no contributions. However, when summed,
(23) and (27a) behave as

~~211. 3
- 2;m \!(tr)i sm 'cosi8.

A similar procedure for the lel-contribution in (20) yields

(29)

(30)-'t!!:t\,;ttr) COSi fJ ( 1+sinifJsinifJ)

for y > 0, r-.O. Results identical to (29) and (30) hold for y <0, and their forms are similar to
the corresponding expressions for the static problem[11, 12]. Results similar to (29) and (30) can
be obtained for 0'" and O''':r
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THE ORIGINAL PROBLEM

The solution for the Lamb's. problems resulting from relaxing (2) can also be found by tbe
transform methods involving (7a, b). The surface displacements for the half;>lane y < 0 are

1Tp,VL-= m
2
N JXlm(~)dq ±S i Xqlm(~)dq

p= T-2ab, X=lx+hl

(31)

(32)

(33)

for ±(x +h) >0 while clearly UL+, VL'" = O. Here integration is along the lower side of the
Re(q)-axis. As indicated previously, we wish to superpose upon the Larnb's problems the
unloaded crack problem in which displacement discontinuities equal to the negatives of the
relative surface displacements UL--UL+=UL-, VL -VL+=VL- appear fory==O, x>O~ Its
solution can be generated from the basic solution as follows:

In the Lamb's problems, the first signals that (N, S) have been applied at y =0-, x =--h
reach (x, y) =0 at s = h, as indicated by (31) and (32). Subsequently, the two half-plane surfaces
for x> 0 behave as if they were joined in the region x > s - h but under,o tbe relative
displacements (UL-, VL-) in the region 0< x < s - h. Equations (31) and (32) show that Ih c;

uL-CXfs) and VL- = vL-(Xfs), i.e. they are homogeneous functions of degree 0 in (X, s). Thus,
the given values uL-(XIs) and vL-(Xfs), in effect, travel along the x-axis with the constant speed
clXfs (s > 0) which lies between zero and CI' If CCI is a particUlar speed, then the corresponding
values UL-(C) and VL-(C) reach x =0 at So =hlc. Conversely, the speed with which these values
reach x = 0 at a given s is C =hf s.

Turning now to the basic solution, it is clear from the previous two sections that any scalar
field variable has the form AINx, y, t, c) +aJz(x, Y, t, c). If the dislocations appear at to >0
instead of t=O and the dislocation strengths are -dvL-(c) and -dui(c) instead of AI andAz,
then this form becomes -Nx, Y, t - to, c)dvL-(c)- !2(x, y, t - to, c)duL-(c), and can be summed
overthe range hfs < C < 1. In view of the previous discussion, this weigbtedsuperposition of
the basic solution gives the unloaded crack problem solution.

It follows that if (F, FL, Fe> are corresponding scalar field variables for, respectively, the
original, Lamb's and unloaded crack problems, then

(34)

(35)

In (35) the expressions for x+h > 0 are employed and, because t is measured froM the time the
dislocations appear at x =0,

(36)

When F~ =u± along y = 0, (34) shows that u+ == 0, u- =UL- until the first si~nal from y =0-,
x =-h reaches x =0 at s = h. Subsequently, hfs < c < 1 and for x> 0, eqn (6) and the
uncoupling discussed in connection with (12a) guarantee that II - I,+ = 0, Iz- - It =
H[c(t - to)- xl =H(cs x - h) for uc±:· Thus, for x >°

(37)

and u- - u+ = 0, in accordance with (2). The analogous result holds for v±, so that (35)
apparently gives the solution to the original problem.
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DYNAMIC STRESS INTENSITY FACTORS

In ,eneral, the Lamb's problem stresses are not siqular at , = O. Therefore, the behavior pf
(T, as , ...0 due to the normal relative displacement induced on the crack surfaces by (N, S)
follows from (30), (32) and (35) as

where (a, P, R) are functions of lIe.In view of (17), therefore, it is convenient to introduce k = lIe
as the integration variable, so that the integration in (38) becomes

M J." (k+ 11)0. [ 2 (a) (P)J _12m'1?Vh I a.V(-r-k) Nm 1m R +SkIm R dk-;K,(N.S) (39)

where -r =: slh and integration is along the lower side of the Re(q)·axis. For 1< l' < m the
integrations reduce to

(40)

while for -r > m the 8-factor is modified by fixing the upper limit as m and adding the term

D(n)H(1'- n) 1Tm2n
Q.(nh/(-r-n)' D(n)= MG_(n)[P(n)+2/a(n)llb(n)/]

and the N-factor is replaced by

1rm2
1t'm

2
1 ~(n -1)----- -- H(n-1').M M O_(n) n--r

(41)

(42)

The simple form of (42) foUows from an integration of (39) by the Cauchy residue theorem; an
anaJoaoUi result was achieved in [6). A similar procedure used with (29) ,wes the behavior of
(T, as , ...0 due to the tanpatial relative displacement induced on the crack surfaces by (N, S).
The total result is that as , ...0,

1TV(It')(Ty-K1cosi6(1+sini6sin~6) +iK2 sin 9COS~6 =K,(N. S) (43)

where for 1< -r< m

(44)

For 'f > m the N·factor is modified by fixing the upper limit as m and adding the term

(45)

and the 8-factor is replaced by

(046)

Relations similar to (43) can be derived for (T" and (T"" where
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Kxy(N, S) =~K\ sin () cos ~ () + K2 cos~ () (1 - sin~ (J sin~ (J). (48)

The forms of (43), (47) and (48) show that K\/Vh and K2/Vh are essentially the mode ~ and
mode II dynamic stress intensity factors. To examiae their behavior, we study the cases of a
umt normal (N = I, S = 0) and unit shear (N =0, S = 1) force. The parameters (Kh K2) are
plotted vs T in Fig. 2 for these cases when m takes thetypiealvalue V3. Itisseen theredW,in.
the first case, (Kh K21grow continuously froJll zero when the fint(4iIMa~1 ~ver.aches

the crack edge at T = 1. Until the Rayleigh waveardvalat T = II, K2 is finite and cbaDaos sian
while K. < 0 and square-root singular as T-+ n. At tbe arrival, K2 is· Square-foot ... and
then decays to zero as 7"-+00, while K\ instantaneously takestbe static value O.5.Tbis is half. the
static value for crack surfaces loaded by equal and opposite normal uRit for~[6].1'hus, the
crack edge is in compression until the Rayleigh wave ardval, but is in tension afterwards. From
another viewpoint, K\ and K2 vie for dominance until just prior to the Rayleigh wave arrival.
After the Rayleigh wave arrival, K2 dominates K" but eventually the situation is reversed.

For the second case, Fig. 2 shows corresponding behavior with the roles of K\and K2

reversed. However, the sign of K2 indicates that,except for the interval just prior to the
Rayleigh wave arrival, the crack edge shear stress and the direction of the unit force are
consistent.

OTHER FRACTURE PARAMETERS

The mode I and mode II dynamic stress intensity factors often govern various criteria for
brittle fracture initiation[l2]. Fracture mechamcs may also attempt to predict the direction in
which fracture, once initiated, will proceed from the crack edge. Two criteria for .thisPUJ'Pose
assume that the crack will run in the direction of, respectively,maximum tensilestress{l3) and
minimum strain energy density intensity[l4). From (43), (41) and (48) thesbear and normal
stresses on planes radiating from the erack edge can for r-+O be written in polar coordinates as

(49)

(50)

Here KJVh and KJVh are dynamic intensity factors. Similarly, E, the strain energy density
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per unit width normal to the xy-plane is given by

2

21r2fJ.rfIB = 4(~ -1) (Kx - K,)2 +ml-l KxK, +K~=2Ks(N. S)

47S

(51)

as r~O. where K,jp.h is the intensity. The parameters (KB, K,., J(,) are plotted vs 8 in Figs. 3
and .. for the two cases (N =I, S =0) and (N =0, S =1) at ditterent values of 'I' > II. where
m =V3. Both fiiures indicate stationary value sbifts with increasing '1'.
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DISCUSSION OF RESULTS

In Fig. 5 the displacements 7TILVL are plotted for our two cases vs sIX whfn x+h>0 and
m=V3. It is seen that the compressive force causes outward surface movement until the
Rayleigh wave arrival, and inward movement sUbsequently. The shear fotce.however, causes
the surface to move inward temporarily (outwvci when x + h < 0). This behavior is consistent
with the K, response seen in Fig. 2.. If,.in view of (34},we tUevL- as a measure. Fig.S shows
that the surface bulging elect may be small except near the Rayle_ waveJotaritbmicpeak
due to the normal force. Thus. modeling a narrow slit as a mathematical crackma, be a useful
approximation, even for the severe impact loadiqstreated here. However. itsltould be· noted
that bulging effects may be important in cases where ia.ged surfaces can, in. elect, mesh in
gear-tooth fashion. Then, frictional effects and contact may have to be considered.

The results of the analysis presented here indicated tbat.umil the Rayl_ wave arrival, tile
crack edge for either normal or shear concentrated forces is in a mixed-moDstatecomp1icated
by the tendency of the crack surface to temporarily move.in direc~ opposite totbose ofttte
corresponding forces. Just after the Rayleiah wave arrival. tile normal and sbear forces Pve rise
to, respectively, mode II and mode I domination·at the crack edee. .wbitt the corresponding
modes take on their nominal static values. Fort9llaUmes. thecol'tespeadiq lJlousdo
dominate, however. Then, except fOr a factor of 2, the stress state near the creked,e due to
the normal (shear) force behaves as if the crack sudlCti were symmetrically (.atisymmetric~

ally) loaded.
The solutions here were constructed by a. sUpe1l)Osioa upon incident wave solutions a

solution which applied theneptives of certain inc__ wave~,.thus~a mathema
tical crack. In applYing this appr~achto problems involving incident waves whiCh first reach a
crack at its edge[2-S1, the crack~ stresses are the appropriate iDcidentwaveeftects. Here,
they were negatives of incident~ments. To construct the superposition..relat~probtems,
the approach of [6] was adoptedalidweigtBd dislocation solutions SUIIU'IleCl·~resl*tto the
dislocation velocity. This approach depended on the homopneity(dynamicsimilarity) 9f~e
incident wave displacements. This .proach can, of course, be used in other crack Problems
involving dynamicany similar variables[151.

Ackllowl"","'fs-Tbis problem wu ..swnteliby Dr. II. P. Rcmm.aaith,TeeImiIche UlIivCfJitat.Wiell. The research
was supported by the Departmeftt ofB~ Seiences. UniversitY of OffOrd. _the OXford· UiUversity Computing
Service.
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