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Abstract—To gain insight into the transmission of impact load disturbances into elastic solids along narrow
slits, the planc-strain problem of concentrated normal and shear forces applied suddenly to one face of a
semi-infinite mathematical crack is treated. Exact solutions are obtained and the dynamic stress intensity
factors and strain energy deasity intensity are studied. It is found that the dominant stress mode (I or IT)
near the crick edge changes rapidly with the arrival of the various waves from the concentrated forces. In
particular, upon the Rayleigh wave arrival, the normal and shear forces cause, respectively, strong mode II
and mode I behavior.

INTRODUCTION

The role of narrow cuts or slits as stress concentrators in elastic solids is well-known[1}. When
the undeformed slit gap is vanishingly small (the slit is a mathematical crack) the stresses
generated near the slit edge by the diffraction of incident waves may temporarily exceed the
stresses for a corresponding quasi-static disturbance[2-5). If the incident waves pass over the
slit edge and then engulf the surfaces, the wave diffraction pattern in the crack limit arises, in
effect, to remove the incident wave stresses which would occur on the slit surface region if no
slit were present. However, the incident waves may reach the slit surface before arriving at the
slit edge. In the crack limit the diffraction pattern now arises, in effect, to remove the
displacement discontinuities which the incident waves would generate ahead of the slit region if
the material were not joined there.

Such situations can arise when the disturbance generating the incident waves is on the slit
surface itself; for instance, the slit may intersect an elastic solid surface subjected to impact
loadings. With a view toward studying these situations, the present article considers the plane
strain problem of comcentrated normal and shear forces applied suddenly to one face of an
initially undisturbed semi-infinite crack. The analysis is guided by {6]), which considered the
symmetric case of egual and opposite normal forces on either face. As in [6], particular
attention focuses on the stress field near the crack edge.

As Lamb's problem analyses show(5, 7], even compressive loadings may produce temporary
outward bulges on the surface to which they are applied. Since the undisturbed mathematical
crack has no gap, this bulging implies material interpenetration. This difficulty can hypothetic-
ally be minimized or eliminated by superposing initial tensile stress fields which provide
sufficiently Iazge gaps. It can also be argued here that the crack is only a mathematical model of
an actual slit with a small but finite gap. Moreover, while the loadings here are applied suddenly
with arbitrary magnitudes, one goal of this work is to provide results which, by superposition,
can be used for actual impact loadings. For these loadings, the bulging magnitudes are smaller
than the finite gaps considered.

As seen in Fig. 1a, the crack is defined in terms of the Cartesian coordinates (x, y) by y =0,
x <0. For s = c,x(time) <0 the elastic solid is at rest, where (c,, ¢;) are the dilatational and
rotational wave speeds. For s > 0 concentrated normal and shear forces N and S, i.e. line loads
in the out-of-plane direction, are applied to the crack surface y =0~ at x = —A. Thus, along
y =0 we have

x<0: (0';101}) = 09 (0’;, 0’;,) = —(Nn S)s(_x - h)H(S) (l)

x>0:(u —-ut', v -0v)=0 2)
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Fig. 1. (a) Loading and geometry, (b) Wave pattern for 0 < s < h, (c) Wave pattern for s > mh.

where (i, v) are the displacements in the (x, y)-directions, & and H are the Dirac and Heaviside
functions and the superscripts denote field variables in the half-planes +y > 0. The governing
equations in both half-planes are

Vi, 0)+ (% = Dty + 0,))y y = M, V)0, m = il )]
1 .2 2 1 _. 2 2 1
ox=m Usy + (m 2)““: oy = m-u,, + (m 2)”9)9 o'xy‘ = u)y + Uy (4)
H 1 2
s=0:(u,v)=0 )

where u is the shear modulus, ( ),, = 3( )/3a and V* is the Laplacian operator.

When (N, §) are applied, a pattern of wavefronts radiates from the point y =0, x=~h into
the half-plane y <0. As seen in Fig. 1(b), this pattern defines the wave motion in the solid for
s <h. For s>k these waves reach the crack edge (x, y) =0 and are diffracted. Figure 1(c)
shows the wave pattern after the rotational wave has reached the edge (s > mh).

Due to the characteristic length h, application of integral transforms directly to.(1)-(5) leads
to sectionally analytic functions in the transform space which are not related in a standard
Wiener-Hopf manner [8]. This difficulty can be avoided by recognizing that if (2) is relaxed, the
probiem reduces to Lamb's problems{7] for two adjacent half-planes, where the loading on-one
hatf-plane vanishes. In view of the aforementioned property of the diffraction pattern, there-
fore, the original problem is essentially a superposition of the two Lamb’s problems. with the
problem of displacement discontinuities prescribed across the plane ahead of an unloaded
crack. In view of (2), these discontinuities are the negatives of the relative displacements of the
two half-plane surfaces arising for x > 0 in the Lamb’s problems. As in [6], the unloaded crack
problem is itself constructed by a superposition of the basic solution treated in the next two
sections.

BASIC SOLUTION
Consider the same crack with both surfaces now stress-free. At some instant ¢ = 0 climb and
glide dislocations of strength A, and A, appear at the crack edge and move in the positive
x-direction with a constant speed cc,;. Equations (3)-(5) once again hold, with ¢ replacing s, but
(1) and (2) are replaced by

x<0: (05, 05)=0 x>0:(u —u',v”—0")=(4, A)H(ct - x). 6)
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The Laplace transform over ¢ and bilateral Laplace transform over x and its inverse are defined
as[9]

f=[10eman fo=[ fweran =g [ frerwds o)

respectively, where p is real, positive and large enough to insure convergence of (7a), ¢ is, in
general, complex and I is the standard inversion path of integration. Application of (7a,b) in
view of (5) and appropriate radiation conditions modify (3) and (4) merely by appending the
superscripts ( )*=( ).» and replacing the operators ( ),, and ( ),, with pq and p, respectively.
Solutions to these transformed equations which are bounded for +y > 0 are

u* = A* e~padl 4 pg* e—pblyl, i+p* = __ﬂAt e—PaIyl +% Bt e-rbi¥l ®)
q

a=a.,a_,a.=\/(1xq) b=b.b_,b,=\(m=xgq) )

where (A*, B*) are arbitrary functions of (p, q) and (a., b.) are defined in the g-plane cut along
Im(q) =0, +Re(q) > (~1, —m) so that Re(a., a), Re(b., b) = 0. Application of (7a, b) to (6) gives

(0; - 0’;, a:y - ‘r;y)* = 0’ (ll_ - u+’ v — U+)* = (A(]v A V)*, (0‘;! a;y)‘ = (0’, T)‘

(10a—)
AUY= Ur 4L pApr= ey B (1)
pq+k) p(q+k)

along y =0, where k = 1/c and the A;-terms exist as transforms for Re(q) > —k Here (o, 7) and
(U, V) are, respectively, the unknown stresses ahead of the crack edge and the unknown crack
surface relative displacements. Thus, they vanish for +x <0, regpe‘ctively. Substitution of (8)
into (10a, b) yields (A*, B®) in terms of (AU, AV)*, whereupon (10c) reduces to

L‘";’;R (%A V*,%A U*) =20,7)*, R=4qab+T, T=m'-2¢.  (12a~c)

Here R is the Rayleigh function which exhibits simple zeros at ¢ = +n, n = ¢,/cg > m and cg
is the Rayleigh wave speed.

The quantities (o, 7) and (U, V) radiate along y = 0 from the crack edge in, respectively, the
positive and negative x-directions behind wavefronts defined by t> kx and t>|x|, where
k = min(k, 1). From (7a, b), then, the Laplace transforms of (o, 7) and (U, V) behave as e Pk
and e ®™, so that (o, 7)* and (U, V)* exist in the overlapping half-planes Re(q)> —k and
Re(q) < 1, respectively. Thus, the form of (12a) shows that, unlike the original problem, the
basic problem reduces to two relations of the standard Wiener—Hopf type [8]. Because they are
uncoupled, their solution is mathematically straightforward. Moreover, the uncoupling shows
that the normal crack plane stress and relative displacement depend on the climb dislocation
strength A, while the shear stress and tangential relative displacement on the crack plane
depend on the glide dislocation strength A,.

Study of (12b) shows that the function

R
G=m, M=21-m? (13)

is analytic in the strip [Re(g)| < 1, has no zeros at g = +n and approaches unity as |g| . From
analytic function theory[8], therefore, G can be written as the product of functions G, and G_,

where
m 2
in Go(a) =1 [ L tan~ (2502w (14)

wtq
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which are analytic in the overlapping regions +Re(q) > —1. Therefore, in view of (11) and the
observations on (o, V)*, the first relation in (12a) can be rewritten as

M(g- _ o
”p;z(qa_n)G“V*+ﬂA’~M2(q+k)f, Gf?qin) (13)

where the first term on the Lh.s. is analytic for Re(q) <1 while the r.h.s. is analytic for
Re(q) > —k. The remaining term has a branch cut for Im(q) =0, Re(q) > 1, a pole at ¢ = — k and
behaves as 0(1/9/q) when |q| = ». Therefore, from analytic function theory[8], it can be written
as the sum of parts which are analytic, respectively, in the overlapping regions Re(q) <1 and
Re(q) > —k. The splitting can be performed by inspection and (15) becomes

M(q n) uM A (q- L 2a.0% oM Ak,
Mo G-V*+ pm’ q+k( +k) +(q+n)+—rr_:5 +k (16)
_(k+n)G.(k) (k+n)G.(k)
LTl BT @

The r.h.s. and Lh.s. of (16) are clearly analytic in, respectively, the overlapping half-planes
Re(q) > ~ k and Re(q) < 1. By analytic continuation, therefore, both sides represent the same
entire function, say Z. Equations (6), (7a, b) and the fact that V =0 for x > 0 lead to the Abelian
statement

v7(07,0)~ v}(07,0) = lim pqV* (18)

where, in view of v’s continuity at (x, y) =0, the Lh.s. is A,/p. Therefore, V* must behave as
0(1/q), |gl= . Study of the Lh.s. of (16) then shows that we must have Z—-0, |g|->
whereupon Liouville’s theorem for bounded entire functions allows the conclusion Z=0.
Equation (16) can now be solved for (g, V)*. A similar procedure is valid for the second
relation in (12a). The expressions for A*, B* now become

g~ n)q + DG4" B) == (¢, T ) bk + (-T2 gb) a kit (19)

and the basic problem is essentially solved. The transform inversion for the stresses and their
behavior near the crack edge is illustrated in the next section, since this is required later.

STRESS BEHAVIOUR NEAR THE CRACK EDGE
As an example, we consider a,. For y >0 eqns (5), (7), (8) and (19) give

* — _Ek A| 2 ., —pay 2 ~pby F-szzT‘IL ~pay _ n—pby
o=y 56 a.(q - n)(q+k)(T e’ +4q°abe )+m2pG_(q—n)(q+k)(e eP),
(20)
Substitution of the second k,-term in (7¢) yields
_ p'kZAZ j Tqb— plax—by)
Yaim? b (- Mg+ k)G ° dq @n

where I” can be taken as the Im(g)-axis. Following the scheme of (10], the Cauchy theorem is
used to change this path to a Cagniard contour along which gx — by = —z, where 2 is a positive,
real parameter. Such a contour is readily found by solving this equation for g, so that (21)
becomes

Eﬁ%&f Re [(—(I——{%G—]——(?—;—TP— rq = —z cos 6+ ilsin O]\/(z* — m*r?)
(22a,b)
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where r=V(x*+ y?), tan 8 = y/x are the polar coordinates seen in Fig. 1. Equation (22b) defines
one branch of a hyperbola with intercept g = —m cos 8. Appropriately, the hyperbola lies in the
half of the g-plane where the exponential in (21) decays as |g|—«. The Laplace transform of
8(t - 2) is ¢ 7, so clearly the inverse of (22a) is

_ pkd Tgb_ b ] H(t—mr)
iz RE [(q a)q + DG IVE=m' @)
where ¢ replaces z in (22b). For x <0, m|cos 8| > 1 the hyperbola intersects, and therefore must

be deformed around, the branch cut Im(q) =0, Re(q) > 1 of b_/G-. The integration along the
additional contour gives, upon inversion, the extra contribution

3
—4M%§19-%;§-(‘§;L1%@}1(w-:)m:-rf(o)l @4

where, since G, is analytic for Re(q) > —1, (13) has been employed and

rq = —t cos 8—~sin 8V (m*r -3, f(8) = |cos 6] +sin 8V (m*~1). (25)

If k< m it is possible that m|cos 8] > k, when for x > 0 the hyperbola crosses the simple pole at
q = —k. The Cauchy residue theorem then gives yet another contribution which, upon inversion,
becomes

L:-n-A}T(k)H[t—'kx~b(k)y]. 26)

Substitution of the first k,-term in (20) into (7¢) yields, similarly,

Tqb.a H(t-r) o - _
%%Re{(q s G_]‘V'(_t’ —fy rM="tcosd+ ilsin V(- P).  (27a,b)

In this case, the hyperbolic Cagniard contour, of which (27b) defines one branch, does not
intersect the branch cut of the integrand. Thus, no contribution analogous to (24) appears. If
k <1, however, it is possible that |cos 8] > k, when for x>0 the simple pole at g =-k is
crossed, resulting in an additional contribution

-f:—n%! TH[t - kx — a(k)y]. 28)

From a wave propagation viewpoint, (23) and (27a) define cylindrical rotational and dilatational
waves which radiate from (x, y) =0 while (24) describes head waves generated by coupling
along the crack surface. The contributions (26) and (28) are the waves generated when the glide
dislocation exceeds, respectively, the shear and dilatational wave speeds in the elastic solid.

To obtain the behavior of the k,-contribution to o, near the crack edge for y >0, we study
(23)-(28) as r— 0. For t> 0 (24), (26) and (28) give no contributions. However, when summed,
(23) and (27a) behave as

%7@_2 sin #cos > 3 0 29

A similar procedure for the k;-contribution in (20) yields
ﬁ_b_f_ﬁ%g cos 9(1+sm Osmés) 30
) 2 2 (30)

for y >0, r—0. Results identical to (29) and (30) hold for y <0, and their forms are similar to
the corresponding expressions for the static problem[11, 12]. Results similar to (29) and (30) can
be obtained for o, and o,
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THE ORIGINAL PROBLEM

The solution for the Lamb’s problems resulting from relaxing (2) can also be found by the
transform methods involving (7a, b). The surface displacements for the half-plane y <0 are

ity ~+foqlm(R)dq+mzsI—flm( )dq (31)
muvy = m’N L%Im(%) dg=S jl %qhn(%) dg 32
P=T-2ab, X=|x+Hh| (33)

for *=(x+h)>0 while clearly u;", v,” =0. Here integration is along the lower side of the
Re(g)-axis. As indicated previously, we wish to superpose upon the Lamb’s problems the
unfoaded crack problem in which displacement discontinuities equal to the negatives of the
relative surface displacements u, ~u;" =u;", v, — v, =v;, appear for y=0, x>0. Its
solution can be generated from the basic solution as follows:

In the Lamb’s problems, the first signals that (N, S) have been applied at y=0", x=-h
reach (x, y) = 0 at s = h, as indicated by (31) and (32). Subsequently, the two half-plane surfaces
for x>0 behave as if they were joined in the region x>s—h but undergo the relative
displacements (u;”, v,”) in the region 0 < x < s — i Equations (31) and (32) show that u;,” =
u; (Xis) and v;” = v, (XIs), i.e. they are homogeneous functions of degree 0 in (X, 5). Thus,
the given values u4;(X/s) and v;"(X]s), in effect, travel along the x-axis with the constant speed
¢, XIs (s > 0) which lies between zero and ¢,. If cc, is a particular speed, then the corresponding
values u; (¢) and v, (c) reach x = 0 at s, = h/c. Conversely, the speed with which these values
reach x =0 at a given s is ¢ = h/s.

Turning now to the basic solution, it is clear from the previous two sections that any scalar
field variable has the form Afi(x, y, £, ¢) + Asfa(x, ¥, t, ¢). If the dislocations appear at £,>0
instead of £ =0 and the dislocation strengths are —dv;"(c) and —dui(c) instead of A, and A,,
then this form becomes —f,(x, y, t — to, €) dv,.(¢) — fox, y, t — to, ¢} du;(c), and can be summed
over the range hls < ¢ < 1. In view of the previous discussion, this weighted superposition of
the basic solution gives the unloaded crack problem solution.

It follows that if (F, F., F) are corresponding scalar field variables for, respectively, the
original, Lamb’s and unloaded crack problems, then

F*=F*+F-H(s~h), F'=0 (34)

‘ -
F, F= J’h!s [fl(xa )’, tﬂs C) L (C) + f?{x$ Yv — o, C)—d{{%((“)] dc. (35)

In (35) the expressions for x + h > 0 are employed and, because ? is measured from the time the
dislocations appear at x =0,

Y :G=h(-i-~1). 36)

When F* = u* along y =0, (34) shows that «* =0, 4~ = 4, until the first signal from y=0",
x=—h reaches x=0 at s=h Subsequently, hls<c<1 and for x>0, eqn (6) and the
uncoupling discussed in connection with (12a) guarantee that f,” - fit=0, fii —fif=
H{c(t - to)— x}= H(cs — x — h) for uc™. Thus, for x>0

t
U - ug = ‘*“L QU yde = —up(Xfs), up = ug (X)s) 37
Xis

and u ~u* =0, in accordance with (2). The analogous result holds for v*, so that (35)
apparently gives the solution to the original problem.
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DYNAMIC STRESS INTENSITY FACTORS
In general, the Lamb’s problem stresses are not singular at r = 0. Therefore, the behavior of
a, as r-0 due to the normal relative displacement induced on the crack surfaces by (N, S)
follows from (30), (32) and (35) as

-5 "’l“" cos-2‘-8(1+sin%8sin%0)vl; ]:‘V-J———(sf W5 [Nm’lm(%)+-§lm (%)]%ﬁ 38)

where (a, P, R) are functions of 1/c. In view of (17), therefore, it is convenient to introduce k = 1/c
as the integration variable, so that the integration in (38) becomes

sy | LG N1 (§) + skim(B) | ak =Lk 09

where 7=s/h and integration is along the lower side of the Re(g)-axis. For 1<r<m the
integrations reduce to

2’"" 2mm g (N, S)= f #ﬁﬁ*—)(PN-ZbS)ta‘{dk 40)

while for 7> m the S-factor is modified by fixing the upper limit as m and adding the term

D(n)H(r—n) __am’n
ave=m D=3 (m P+ Ualn) b)) (@1)

and the N-factor is replaced by

o V() He-n @

The simple form of (42) follows from an integration of (39) by the Cauchy residue theorem; an
analogous result was achieved in [6). A similar procedure used with (29) gives the behavior of
o, as r—0 due to the tangential relative displacement induced on the crack surfaces by (N, $).
The total result is that as r—0,

=V(hr)o,-K, cosy (I + sm; 8 sm; 8) +=K,sin6cos3 ; 6=K/(N,S) (43)

where for I1<r<m

(PN ~2kbS)b_|a| dk. (44)
For > m the N-factor is modified by fixing the upper limit as m and adding the term
D(n) H(r - n)

B Vir=n) “)
and the S-factor is replaced by

;;'}2- ;:‘;G.l(n} \/(u m)”"‘ -7 (46)

Relations similar to (43) can be derived for o, and o,,, where

KN, $) =K, cos%d(l—sin%ﬂsin%O)-K, sin-21-0(2+cos%0cos%0) @)
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Fig. 2. K, Ky vs .

K, (N, S) = Kl smacos;(Hchos; (l—sin%esin—;-ﬂ). (48)

The forms of (43), (47) and (48) show that K,/Vh and K,/Vh are essentially the mode . and
mode II dynamic stress intensity factors. To examine their behavior, we study the cases of a
unit normal (N =1, $=0) and unit shear (N =0, S=1) force. The parameters (K, K,) are
plotted vs 7 in Fig. 2 for these cases when m- takes the typical value V3. It is seen there that, in
the first case, (K, K) grow continuously from zero when the first (dilatational) wave reaches
the crack edge at r = 1. Until the Rayleigh wave arrival at 7= n, K, is finite and changes sign
while K, <0 and square-root singular as 7— n. At the arrival, K, is square-root singular and
then decays to zero as -, while K, instantaneously takes the static value 0.5. This is half the
static value for crack surfaces loaded by equal and opposite normal unit farces{ﬁ} Thus, the
crack edge is in compression until the Rayleigh wave arrival, but is in tension afterwards. From
another viewpoint, K, and K; vie for dominance until just prior to the Rayiexgh wave arrival.
After the Rayleigh wave arrival, K, dominates K, but eventually the situation is reversed.

For the second case, Fig. 2 shows corresponding behavior with the roles of K; and K,
reversed. However, the sign of K, indicates that, except for the interval just prior to the
Rayleigh wave arrival, the crack edge shear stress and the direction of ‘the unit force are
consistent.

OTHER FRACTURE PARAMETERS

The mode I and mode II dynamic stress intensity factors often govern various criteria for
brittle fracture initiation[12]. Fracture mechanics may also attempt to predict the direction in
which fracture, once initiated, will proceed from the crack edge. Two criteria for this purpose
assume that the crack will run in the direction of, respectively, maximum tensile stress{13] and
minimum strain energy density intensity[14]. From (43), (47) and (48) the shear and normal
stresses on planes radiating from the crack edge can for r— 0 be written in polar coordinates as

7V (rh)oe-31 K, sin 8+ K53 cos 6 — 1)} cosj6 = Ko(N, S) 49)
7V (rh)og- (K, cosid — 3K, sinj@)cosi 0 = K (N, S). (50)

Here K,4Vh and KJVh are dynamic intensity factors. Similarly, E, the strain energy density
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per unit width normal to the xy-plane is given by

2
m

Yw*urhE =3(7"~,—_T)(K,—K,)’+-’;}_—1K,K,+ K2, = 2K(N, S) 1)

as r-»0, where Kg/uh is the intensity. The parameters (K, K., K,) are plotted vs @ in Figs. 3
and 4 for the two cases (N=1, $=0) and (N =0, S =1) at different values of 7> n, where
m =V/3. Both figures indicate stationary value shifts with increasing .

Kg (1,0) —=——

Ke (0,1) = ——

/1=

| l | 00
-80° -120°  -e0° 0° 60° 120° 180°
o

Fig.3. Kg vs 0.

. L
-180° ¢ -60° 0° 80° 1200 180°

Fig. 4. Km K. vs 8.
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DISCUSSION OF RESULTS

In Fig. 5 the displacements muv,~ are plotted for our two cases vs s/X when x + h >0 and
m=V3. It is seen that the compressive force causes outward surface movement until the
Rayleigh wave arrival, and inward movement subsequently. The shear force, however, causes
the surface to move inward temporarily (outward when x + h <0). This behavior is consistent
with the K| response seen in Fig. 2. If, in view of (34), we take v;” as a measure, Fig. 5 shows
that the surface bulging effect may be small except near the Rayleigh wave logarithmic peak
due to the normal force. Thus, modeling a narrow slit as a mathematical crack may be a useful
approximation, even for the severe impact loadings treated here. However, it should be noted
that bulging effects may be important in cases where jagged surfaces can, in effect, mesh in
gear-tooth fashion. Then, frictional effects and contact may have to be considered.

The resuits of the analysis presented here indicated that, until the Rayleigh wave arrival, the
crack edge for either normal or shear concentrated forces is in a mixed-modeé state complicated
by the tendency of the crack surface to temporarily move in directions opposite to those of the
corresponding forces. Just after the Rayleigh wave arrival, the normal and shear forces give rise
to, respectively, mode II and mode I domination at the crack edge, while the corresponding
modes take on their nominal static values. For long times, the corresponding modes -do
dominate, however. Then, except for a factor of 2, the stress state near the crack edge due to
the normal (shear) force behaves as if the crack surfaces were symmetrically (antisymmetric-
ally) loaded.

The solutions here were constructed by a superposing upon incident wave solutions a
solution which applied the negatives of certain incident-wave effects, thus defining a mathema-
tical crack. In applying this approach to prohlems mvnivmg incident waves which first reach a
crack at its edge[2-5], the crack plane stresses are the appropriate incident wave effects, Here,
they were negatives of incident displacements. To construct the superposition-related problems,
the approach of (6] was adopted and weighted dislocation solutions summed with respect to the
dislocation velocity. This approach depended on the homogeneity (dynamxc similarity) of the
incident wave displacements. This approach can, of course, be used in other crack problems
involving dynamically similar variables{15].
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